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Causal Mutation Homework Assignment

Most of the SNP variations associated with diseases in genome-wide association studies do not cause the disease, but
instead, these SNPs serve as genetic markers that are linked to genes which are involved in the disease. Ongoing
research is attempting to sequence these genes in patients and in controls to find the actual variations in these genes that
do in fact, cause the disease.

For this assignment I would like you to choose a simple Mendelian inherited disease other than those mentioned in class
(Huntingtons, diabetes, Parkinsons, cystic fibrosis, sickle cell, etc.) and describe what is known about the genetic
variations that cause that disease.

You may search OMIM, dbSNP, dbVAR, HGMD, HGVS, ClinVar, SwissVar and other database of genome variations
that are associated with specific diseases to find an example of the kinds of mutations associated with the disease. Please
describe how each of these variations cause the disease.

Is it by:

1) mutating the coding region of the protein

2) altering the gene expression by affecting the promoter

3) altering gene expression by affecting a transcription factor binding site

4) altering gene expression indirectly by mutating a transcription factor itself
5) altering copy number, hence changing gene expression levels

6) altering other regulatory sites (miRNA targets)

7) altering splice signals

etc.

Often there will be several types of mutations that can cause the disease. Please comment on all types that are known for
your chosen disease.
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HumbBio 157
The Biology of Stem Cells

HUMBIO 157: The Biology of Stem Cells (DBIO 257)

The role of stem cells in human development and potential for treating disease. Guest lectures by biologists, ethicists, and
legal scholars. Prerequisites: HumBio 2A and 3A, or the equivalent in the BioCore in Biological Sciences.

Terms: Spr | Units: 3 | UG Reqs: WAY-SMA | Grading: Letter or Credit/No Credit
Instructors: Fuller, M. (Pl) ; Nusse, R. (Pl)

Schedule for HUMBIO 157

2014-2015 Spring

HUMBIO 157 | 3 units | UG Regs: WAY-SMA | Class # 20511 | Section 01 | Grading: Letter or Credit/No Credit | LEC |
Students enrolled: 28

03/30/2015 - 06/03/2015 Tue, Thu 2:15 PM - 3:45 PM at Econ 140 with Fuller, M. (P1): Nusse, R. (PI)
Instructors: Fuller, M. (PI); Nusse, R. (PI)

© Doug Brutlag 2015



oocyte

pronucleus

Early Embryo Development

zygote

2-cell

4-cell

8-cell

morula

blastocyst

301001

—

_blastomere

&0

16

ICM

Maternal

mMRNA

degradation

—~

Zygotlic gene

activation

AJ:\.‘I.IM_'\'LT.qu_"\.' » .'rnll.ﬁ‘-. =t :Id.ﬂ-:;l _'ﬁq"-!.l_'l
| ¥ f N

.. ¥ 0 .-! l.. '.{ .' .:I' .:

~ L1} wong et dl. 2010 Nat. Biotech. 28; 115-1121

© Doug Brutlag 2015


http://www.ncbi.nlm.nih.gov/pubmed/20890283

Differentiation of Human Tissues
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Embryonic Stem Cell Cultures
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i' Established embryonic stem cell cell cultures
Thomson et al, Science (1998) 282, 1145-1147 Courtesy Paul Berg
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Pluripotent Stem Cells Differentiate
into many Cell Types

Add different
growth factors
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Basic Problems of Stem Cell Therapy

* HOW TO DIRECT DIFFERENTIATION OF CELLS DOWN
SPECIFIC PATHWAYS?
e.g. all into muscle or all into nerve; ditferent “cocktails”
of growth factors

* HOW TO OVERCOME IMMUNE REJECTION?
e.g. alter histocompatibility genes; therapeutic cloning for
“customized” lines

* HOW TO MAKE AN ORGAN?
e.g. combine different cell types in three dimensional
arrangements.

Courtesy Paul Berg
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Methods to Generate
Pluripotent Stem Cells
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Nanog-Mediated Enhancement of
Reprogramming by Fusion
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Five Factors Needed to
Maintain Pluripotency

Table 1. Comparison of the Five Factors in the Phenotype of Loss-of-Function and Gain-of-Function Experiments

Knockout ES Cells

Knockout Embryos

Overexpression in ES Cells

Oct-3/4

Sox2

c-Myc

KLF4

Nanog

Cannot be established
Niwa et al., 2000
Cannot be established
Masui et al., 2007

Can be established
Normal self-renewal
Davis et al., 1993
Not reported

Can be established
Spontaneous differentiation

Mitsui et al., 2003

No epiblast
Nichols et al., 1998
No epiblast

Avilion et al., 2003

Normal epiblast

Davis et al., 1993

Normal epiblast

Katz et al., 2002

No epiblast

Mitsui et al., 2003

Induces differentiation

Niwa et al., 2000

Does not induce differentiation

Does not induce LIF independency

M. Nakagawa and S.Y., unpublished data
Does not induce differentiation

Induces LIF independency

Cartwright et al., 2005

Does not induce differentiation

Induces LIF independency

Y. Tokuzawa, M. Nakagawa, and S.Y., unpublished data
Does not induce differentiation

Induces LIF independency

Chambers et al., 2003:; Mitsui et al., 2003

Y amanaka. (2007) Cell Stem Cell Vol 1, pp 39-49.
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Induction of Pluripotent Stem Cells (iPS)
from Somatic Stem Cells
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Y amanaka. (2007) Cell Stem Cell Vol 1, pp 39-49.
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Adipose Tissue Provides iPSC Efficiently

‘Liposuction leftovers' easily converted to iPS
cells, study shows

BY KRISTA CONGER

Globs of human fat removed Steve Fisch Photography
during liposuction conceal
versatile cells that are more
quickly and easily coaxed to
become induced pluripotent
stem cells, or iPS cells, than are
the skin cells most often used
by researchers, according to a
new study from Stanford’s
School of Medicine.

“We've identified a great natural
resource,” said Stanford surgery
professor and co-author of the
research, Michael Longaker,

MD, who has called the readily :
available liposuction leftovers Joseph Wu, Ning Sun and Michael Longaker collaborated on

“liquid gold.” Reprogramming research that showed stem cells found in fat tissue could easily be
adult cells to function like converted into iPS cells.

embryonic stem cells is one
way researchers hope to create patient-specific cell lines to regenerate tissue or to study

specific diseases in the laboratory.

Sun et a, Proc Natl Acad Sci U SA. 2009 Sep 15;106(37):15720-5.
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Using CRE — Recombinase to Remove Viral
Transforming DNA from iPSCs

Parkinson’s Disease Patient-Derived
Induced Pluripotent Stem Cells
Free of Viral Reprogramming Factors

Frank Soldner,1# Dirk Hockemeyer,:4 Caroline Beard,! Qing Gao,' George W. Bell, Elizabeth G. Cook,! Gunnar Hargus,?
Alexandra Blak,2 Oliver Cooper,® Maisam Mitalipova,! Ole Isacson,? and Rudolf Jaenisch1:2*

The Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
2Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA

3Udall Parkinson Disease Research Center of Excellence, Center for Neuroredegeneration Research,
McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA

4These authors contributed equally to this work

*Correspondence: jaenisch@wi.mit.edu

DOI 10.1016/j.cell.2009.02.013

Soldner et al. Cell. 2009 Mar 6:136(5):964-77.
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Cre-Lox Recombination to
Remove Viral DNA

target
DNA

L el
/7

lox P
sites

Figure 1. A pair of lox P sites (yellow ovals) flanking the target DNA (purple) to be
deleted.

target
DNA
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*
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site
'il;;e 2. After the cre enzyme has excised the target DNA, one lox P site is left

Fi
behind and the two flanking fragments of DNA are spliced together. The target
DNA is excised and degraded.
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Inducing iPSCs using
Transcription Factor Proteins

Cell Stem Cell

Generation of Human Induced Pluripotent Stem Cells
by Direct Delivery of Reprogramming Proteins

Dohoon Kim,'.5 Chun-Hyung Kim,:5 Jung-Ill Moon,! Young-Gie Chung,® Mi-Yoon Chang,! Baek-Soo Han,!
Sanghyeok Ko, Eungi Yang,! Kwang Yul Cha,* Robert Lanza,®* and Kwang-Soo Kim'2:4*

"Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School

?Harvard Stem Cell Institute

115 Mill Street, Belmont, MA 02478, USA
3Stem Cell and Regenerative Medicine International, 381 Plantation Street, Worcester, MA 01605, USA

4CHA Stem Cell Institute, CHA University, 606-16 Yoeksam 1-dong, Gangnam-gu, Korea

SThese authors contributed equally to this work
*Correspondence: rlanza@advancedcell.com (R.L.), kskim@mclean.harvard.edu (K.-S.K.)

DOI 10.1016/j.stem.2009.05.005
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Direct conversion of mouse fibroblasts to self-renewing,
tripotent neural precursor cells

Ernesto Lujan®®, Soham Chanda®<, Henrik Ahlenius®9, Thomas C. Siidhof“®-', and Marius Wernig®91

*Institute for Stem Cell Biology and Regenerative Medicine, Departments of “Pathology, “Genetics, and “Molecular and Cellular Physiology, and *Howard
Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305

We recently showed that def ned sets of transcription factors are suff cient to convert mouse and human f broblasts

= directly into cells resembling functional neurons, referred to as “induced neu- rona” (iN) cells. For some
applications however, it would be de- sirable to convert f broblasts into proliferative neural precursor cells (NPCs)
instead of neurons. We hypothesized that NPC-like cells may be induced using the same principal approach used
’ for generating iN cells. Toward this goal, we infected mouse embry- onic f broblasts derived from Sox2-EGFP

mice with a set of 11 transcription factors highly expressed in NPCs. Twenty-four days after transgene induction,
Sox2-EGFP+ colonies emerged that expressed NPC-specif t genes and differentiated into neuronal and astrocytic
cells. Using stepwise elimination, we found that Sox2 and FoxG1 are capable of generating clonal self-renewing,
bipotent induced NPCs that gave rise to astrocytes and functional neurons. When we added the Pou and
Homeobox domain-contain- ing transcription factor Brn2 to Sox2 and FoxG1, we were able to induce tripotent
NPCs that could be differentiated not only into neurons and astrocytes but a so into oligodendrocytes. The tran-
scription factors FoxG1 and Brn2 alone also were capable of in- ducing NPC-like cells; however, these cells
generated less mature neurons, although they did produce astrocytes and even oligoden- drocytes capable of
integration into dysmyelinated Shiverer brain. Our data demonstrate that direct lineage reprogramming using

target cell-type—specif T transcription factors can be used to induce NPC-like cells that potentially could be used
© Doug Brutlag 2015
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Direct versus indirect Cell Reprogramming

http:/ / www.the-scientist.com /?articles.view / articleNo /39241 / title / A-Twist-of-Fate /

CELLULAR REPROGRAMMING

For the better part of the past decade, researchers have been reprogramming adult cell types, either into induced

pluripotent stem cells (iPSCs), which themselves can give rise to diverse cell types, or directly into other differentiated
1 cell types through a process called direct reprogramming. Such approaches support the switching of diverse cell types
\ once believed to be permanently locked in their differentiated form.
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Cell Reprogramming in vivo & in vitro
http:/[www.the-scientist.com/?articles.view/articleNo/39241/title/ A- Twist-of-Fate/
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Alternate Stem Cell Fates
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signals from niches maintain
adult stem cells and tissues

Courtesy of Roel Nusse



In the absence of niche signals,
adult stem cells will differentiate, by default

1. Self-renewal is proliferation coupled to blocking
differentiation, controlled by signals.

2.Signals are local; niches have a limited capacity and
cells compete for the signals

3. The signals control tissue homeostasis, also after
damage

Courtesy of Roel Nusse



Oocyte Niche in the Drosophila Germarium

Hub cell

Cap cell
Germ line
stem cell
Cystoblast _
Inner sheath Somatic Follicle cell
cells stem cell

Li and Xie, Ann. Rev. Dev. Biol. 2005, 605-663
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Cell-Cell Interactions at Oocyte Niche
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Drosophila Spermatogonial Niche

Li and Xie, Ann. Rev. Dev. Biol. 2005, 605-663
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Cell-Cell Interactions at the Spermatogonial
Niche

DE-cadherin

Li and Xie, Ann. Rev. Dev. Biol. 2005, 605-663
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Summary of Stem Cell Niche Signals
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Intestinal Stem Cells in Crypts

Clevers Lab|Digizyme
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Asymmetric stem cell divisions
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John Cairns: The Immortal Parental Strands

Nature Vol. 255 May 15 1975 197

review article

Mutation selection and

the natural history of cancer
John Cairns*

Survival of the rapidiy renewing tissues of long-lived animals like man requires that they be protected
against the natural selection of fitter variant cells (that is, the spontaneous appearance of cancer).
This article discusses three possible protective mechanisms and shows how they could explain various
Seatures of the natural history of certain common cancers of man.

Cairns (1975) Nature 255, 197
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Motivation for Asymmetric Strand Segregation

® Adult rat contains 6x10'° cells

® In its small intestine, a rat sheds over 103
epithelial cells during its lifetime.

® Requires 10° symmetric cell doublings from
embryo to adult followed by 10 asymmetric
cell doublings during its lifetime

* How do epithelial cells minimize mutations
that lead to cancer?

Cairns (1975) Nature 255, 197
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Asymmetric Segregation of
Parental DNA Strands
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Asymmetric DNA Labeling Patterns
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Duplicating Muscle Cell Pairs Display
Asymmetric DNA Labeling Patterns

Hoechst First Label Second Label Merge
(CldU) (ldU)

Figure 2. Evidence of Co-Segregation of DNA Template Strands during Muscle Progenitor Cell Division
(B) Cell pairs were immunostained for CldU and IdU. Shown is a representative photograph of an immunostained pair of cells, in which both daughter
cells were labeled with the second label, IdU {green), but only one daughter inherited the first label, CldU (red).
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Conboy et a, PLOS Biology (2007)
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Asymmetric Stem Cell Growth with
Asymmetric Parental Strand Segregation
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